Array operations in java

Массив типа String

Ну и вкратце хотелось бы рассказать о массиве типа .

Как мы уже говорили, массив может быть любого типа. А значит, можно создать массив типа . Вот как бы выглядел код, если бы нам нужно было написать программу, которая «вводит с клавиатуры 10 строк и выводит их на экран в обратном порядке».

Создаем объект
Создаем объект-массив на 10 элементов
Цикл от 0 до 9
Читаем строку с клавиатуры и сохраняем ее в очередную ячейку массива
Цикл от 9 до 0
Выводим на экран очередную ячейку массива

Код практически не изменился! Пришлось только при создании массива заменить тип на . Ну и при чтении строки с клавиатуры заменить метод на .

Инициализация массива

Инициализация — это заполнение массива конкретными данными, а не данными по умолчанию.

Нижеследующий код позволит создать массив, включающий в себя 4 сезона года. Также мы выполним заполнение массива строками-названиями сезонов:

String[] seasons  = new String4]; /* выполнили объявление и создание массива из 4 строк, где по умолчанию записано null, ведь строка — ссылочный тип данных*/

seasons = "Winter"; /* в первую ячейку записали строку Winter*/
seasons1 = "Spring"; /* во вторую ячейку (номер 1) записали строку Spring и т. д.*/
seasons2 = "Summer"; 
seasons3 = "Autumn"; 

Так мы записали названия всех сезонов. Но в принципе можно всё сделать проще, совместив инициализацию и объявление:

String[] seasons  = new String[] {"Winter", "Spring", "Summer", "Autumn"};

Или даже так, опустив оператор new:

String[] seasons  = {"Winter", "Spring", "Summer", "Autumn"};

Iterating Over an Array

Accessing elements one by one can be useful, but we might want to iterate through an array. Let’s see how we can achieve this.

The first way is to use the for loop:

This should print numbers 1 to 5 to the console. As we can see we made use of the length property. This is a public property giving us the size of the array.

Of course, it’s possible to use other loop mechanisms such as while or do while. But, as for Java collections, it’s possible to loop over arrays using the foreach loop:

This example is equivalent to the previous one, but we got rid of the indices boilerplate code. The foreach loop is an option when:

  • we don’t need to modify the array (putting another value in an element won’t modify the element in the array)
  • we don’t need the indices to do something else

Строки

Оптимизация строки

Для конкатенации (сложения) строк в Java используется оператор «+», для примера, в цикле новый объект может создаваться для каждой новой строки, что приводит к потере памяти и увеличению времени работы программы.

Необходимо избегать создания Java строк через конструктор, пример:

Одинарные и двойные кавычки

Что ты ожидаешь в результате выполнения этого кода?

Казалось бы, строка должна возвращать «HaHa», но на самом деле это будет «Ha169».

System Administrator/DevOps

Piano, Удалённо, По итогам собеседования

tproger.ru

Вакансии на tproger.ru

Двойные кавычки обрабатывают символы как строки, но одинарные кавычки ведут себя иначе. Они преобразуют символьные операнды ( и ) в целые значения посредством расширения примитивных типов — получается 169.

Метод arraycopy() — Копирование массива

Стандартная библиотека Java содержит статический метод System.arraycopy(), который копирует массивы значительнее быстрее, чем при ручном копировании в цикле for.

В аргументах arraycopy() передаётся исходный массив, начальная позиция копирования в исходном массиве, приёмный массив, начальная позиция копирования в приёмном массиве и количество копируемых элементов. Любое нарушение границ массива приведёт к исключению.

Разработчик Avi Yehuda написал программу, которая вычисляет время на копирование с помощью цикла for и с помощью метода arraycopy() на примере с миллионом элементов. Ручное копирование у него заняло 182 мс, с помощью метода arraycopy() — 12 мс. Разница колоссальна.

Сортировка

Вы можете отсортировать элементы массива с помощью метода Arrays.sort() в соответствии с порядком их сортировки:

int[]   ints = new int;

for(int i=0; i < ints.length; i++){
    ints = 10 - i;
}

System.out.println(java.util.Arrays.toString(ints));

java.util.Arrays.sort(ints);

System.out.println(java.util.Arrays.toString(ints));

Первая строка объявляет и создает экземпляр массива int длиной 10. Цикл for перебирает массив и вставляет значения в каждый элемент. Введенные значения будут идти от 10 до 1 в порядке убывания.

После цикла for массив преобразуется в строку с помощью Arrays.toString() и выводится на консоль (командная строка). Выход:

Затем массив сортируется с помощью Arrays.sort(). Элементы теперь будут упорядочены в порядке возрастания.

После сортировки массива он снова преобразуется в строку и выводится на консоль. Вывод:

Сортировка объектов

Показанный ранее пример Arrays.sort() работает только для массивов примитивных типов данных, которые имеют порядок:

  • естественный;
  • числовой;
  • символьный в таблице ASCII (двоичное число, представляющее символ).

У объектов может не быть естественного порядка сортировки, поэтому вам нужно предоставить другой объект, который может определять порядок ваших объектов. Такой объект называется компаратором – это интерфейс.

Вот первый класс для объектов, которые мы хотим отсортировать:

private static class Employee{
    public String name;
    public int    employeeId;

    public Employee(String name, int employeeId){
        this.name       = name;
        this.employeeId = employeeId;
    }
}

Класс Employee – это простая модель сотрудника, у которого есть имя и идентификатор. Вы можете отсортировать массив объектов Employee по имени или по идентификатору сотрудника.

Вот первый пример сортировки массива объектов Employee по их имени с помощью метода Arrays.sort():

Employee[] employeeArray = new Employee;

employeeArray = new Employee("Xander", 1);
employeeArray = new Employee("John"  , 3);
employeeArray = new Employee("Anna"  , 2);

java.util.Arrays.sort(employeeArray, new Comparator() {
    @Override
    public int compare(Employee e1, Employee e2) {
        return e1.name.compareTo(e2.name);
    }
});


for(int i=0; i < employeeArray.length; i++) {
    System.out.println(employeeArray.name);
}
  1. Сначала объявляется массив.
  2. Три объекта Employee создаются и вставляются в массив.
  3. Метод Arrays.sort() вызывается для сортировки массива. В качестве параметра передаем массив employee и реализацию Comparator, которая может определять порядок объектов Employee. Это создает анонимную реализацию интерфейса Comparator.

В примере важно уловить реализацию метода compare() анонимной внутренней реализации интерфейса Comparator. Этот метод возвращает:

  • положительное число, если первый объект «больше»(позже в порядке сортировки), чем второй объект;
  • 0 – они «равны»(в порядке сортировки);
  • отрицательное число, если первый объект «меньше» (ранее в порядке сортировки), чем второй объект.

В приведенном выше примере мы просто вызываем метод String.compare(), который выполняет для нас сравнение (сравнивает имена сотрудников).

После сортировки массива мы перебираем его и выводим имена сотрудников. Вывод:

Anna
John
Xander

Обратите внимание, как порядок был изменен по сравнению с порядком, в котором они были первоначально вставлены в массив. Сортировка объектов Employee по их идентификатору сотрудника на основании предыдущего примера с измененной реализацией метода compare() анонимной реализации интерфейса Comparator:

Сортировка объектов Employee по их идентификатору сотрудника на основании предыдущего примера с измененной реализацией метода compare() анонимной реализации интерфейса Comparator:

Employee[] employeeArray = new Employee;

employeeArray = new Employee("Xander", 1);
employeeArray = new Employee("John"  , 3);
employeeArray = new Employee("Anna"  , 2);

java.util.Arrays.sort(employeeArray, new Comparator() {
    @Override
    public int compare(Employee e1, Employee e2) {
        return e1.employeeId - e2.employeeId;
    }
});

for(int i=0; i < employeeArray.length; i++) {
    System.out.println(employeeArray.name);
}

Вывод:

Xander
Anna
John

Чтобы сравнить объекты Employee в массиве сначала по их имени, а если оно совпадает, то по их идентификатору сотрудника, реализация compare():

java.util.Arrays.sort(employeeArray, new Comparator() {
    @Override
    public int compare(Employee e1, Employee e2) {
        int nameDiff = e1.name.compareTo(e2.name);
        if(nameDiff != 0) { return nameDiff; }
    
        return e1.employeeId - e2.employeeId;
    }
});

Класс Arrays

Класс java.util.Arrays предназначен для работы с массивами. Он содержит удобные методы для работы с целыми массивами:

  • copyOf() − предназначен для копирования массива
  • copyOfRange() − копирует часть массива
  • toString() − позволяет получить все элементы в виде одной строки
  • sort() — сортирует массив методом quick sort
  • binarySearch() − ищет элемент методом бинарного поиска
  • fill() − заполняет массив переданным значением (удобно использовать, если нам необходимо значение по умолчанию для массива)
  • equals() − проверяет на идентичность массивы
  • deepEquals() − проверяет на идентичность массивы массивов
  • asList() − возвращает массив как коллекцию

Сортировка массива

Сортировка (упорядочение по значениям) массива a производится методами Arrays.sort(a) и Arrays.sort(a, index1, index2). Первый метод упорядочивает в порядке возрастания весь массив, второй — часть элементов (от индекса index1 до индекса index2). Имеются и более сложные методы сортировки. Элементы массива должны быть сравниваемы (поддерживать операцию сравнения).

Сортировка массива для ArrayAdapter

Массивы часто используются в адаптерах для заполнения данными компоненты Spinner, ListView и т.п.

Предположим, у вас есть массив строк и его нужно отсортировать перед отдачей массива адаптеру ArrayAdapter. Это позволит вывести строки в упорядоченном виде, например, в ListView:

У метода sort() есть перегруженные версии, где можно указать диапазон массива, в пределах которого следует произвести сортировку.

Копирование массивов

Метод Arrays.copyOf(оригинальный_массив, новая_длина) — возвращает массив-копию новой длины. Если новая длина меньше оригинальной, то массив усекается до этой длины, а если больше, то дополняется нулями.

Теперь первый массив останется без изменений, а со вторым массивом делайте что хотите. Смотрим на результат.

Можно создать увеличенную копию, когда копируются все значения из маленького массива, а оставшиеся места заполняются начальными значениями, например, нулями.

Метод Arrays.copyOfRange(оригинальный_массив, начальный_индекс, конечный_индекс) — также возвращает массив-копию новой длины, при этом копируется часть оригинального массива от начального индекса до конечного –1.

Метод Arrays.toString()

Если использовать вызов метода toString() непосредственно у массива, то получите что-то непонятное и нечитаемое.

Метод Arrays.toString(массив) возвращает строковое представление массива со строковым представлением элементов, заключённых в квадратные скобки. В примерах выше мы уже вызывали данный метод.

Метод deepToString() удобен для вывода многомерных массивов. Этот метод мы также уже использовали выше.

Метод Arrays.fill() — наполнение массива одинаковыми данными

Метод Arrays.fill() позволяет быстро заполнить массив одинаковыми значениями. У метода есть восемнадцать перегруженных версий для разных типов и объектов.

Метод fill() просто дублирует одно заданное значение в каждом элементе массива (в случае объектов копирует одну ссылку в каждый элемент):

Запустив код, вы увидите, что на экране по очереди выводятся значения:

Можно заполнить данными в нужном интервале за два прохода:

Сначала массив заполнится мяуканьем кота 4 раза, а потом на третью позицию попадает слово Гав!:

Как видите, метод заполняет весь массив, либо диапазон его элементов. Но получаемые одинаковые данные не слишком интересны для опытов, но пригодятся для быстрых экспериментов.

Метод equals() — сравнение массивов

Класс Arrays содержит метод equals() для проверки на равенство целых массивов. Чтобы два массива считались равными, они должны содержать одинаковое количество элементов, и каждый элемент должен быть эквивалентен соответствующему элементу другого массива.

Напишем код в своей учебной программе.

Мы создали два массива и заполнили их одинаковыми числами. При сравнении мы получим true. Добавим в код строчку кода, которая заменит один элемент во втором массиве:

Теперь при сравнении будет выдаваться false.

Главное о массивах

Главные характеристики массива: тип помещённых в него данных, имя и длина. Последнее решается при инициализации (выделении памяти под массив), первые два параметра определяются при объявлении массива.

Размер массива (количество ячеек) нужно определять в int

Изменить длину массива после его создания нельзя.

Доступ к элементу массива можно получить по его индексу.

В массивах, как и везде в Java, элементы нумеруются с нуля.

После процедуры создания массива он наполнен значениями по умолчанию.

Массивы в языке Java устроены не так, как в C++. Они почти совпадают с указателями на динамические массивы.

Объявление массива

Переменная массива Java объявляется точно так же, как и переменная нужного типа, за исключением добавления [] после типа. Вот простой пример объявления:

int[] intArray;

Вы можете использовать массив в качестве поля, статического поля, локальной переменной или параметра, как и любую другую переменную. Ведь это просто вариация типа данных. Вместо того, чтобы быть единственной переменной этого типа, это набор переменных этого типа.

Вот еще несколько примеров объявления:

String[]  stringArray;

MyClass[] myClassArray;

Первая строка объявляет массив ссылок String. Во второй строке объявляется массив ссылок на объекты класса MyClass, созданного пользователем.

У вас есть выбор места для квадратных скобок []. Первое вы уже видели, второе находится после имени переменной. Следующие объявления равнозначные:

int[] intArray;
int   intArray[];

String[] stringArray;
String   stringArray[];

MyClass[] myClassArray;
MyClass   myClassArray[];

Лучше указывать квадратные скобки [] после типа данных (например, String []), тогда код легче читать.

Массив

В любом языке программирования используются массивы, удобные для работы с большим количеством однотипных данных. Если вам нужно обработать сотни переменных, то вызывать каждую по отдельности становится муторным занятием. В таких случаях проще применить массив. Для наглядности представьте себе собранные в один ряд пустые коробки. В каждую коробочку можно положить что-то одного типа, например, котов. Теперь, даже не зная их по именам, вы можете выполнить команду Накормить кота из 3 коробки. Сравните с командой Накормить Рыжика. Чувствуете разницу? Вам не обязательно знать котов по именам, но вы всё равно сможете справиться с заданием. Завтра в этих коробках могут оказаться другие коты, но это не составит для вас проблемы, главное знать номер коробки, который называется индексом.

Еще раз повторим теорию. Массивом называется именованное множество переменных одного типа. Каждая переменная в данном массиве называется элементом массива. Чтобы сослаться на определённый элемент в массиве нужно знать имя массива в соединении с целым значением, называемым индексом. Индекс указывает на позицию конкретного элемента относительно начала массива

Обратите внимание, что первый элемент будет иметь индекс 0, второй имеет индекс 1, третий — индекс 2 и так далее. Данное решение было навязано математиками, которым было удобно начинать отсчёт массивов с нуля

Многомерные массивы

Приведенные выше примеры – все созданные массивы с одним измерением, то есть элементы с индексами, начиная с 0 и выше. Однако возможно создать массивы, в которых каждый элемент имеет два или более индексов. Они идентифицируют (размещают) его в массиве.

Вы создаете многомерный массив в Java, добавляя один набор квадратных скобок ([]) к измерению, которое хотите добавить. Вот пример, который создает двумерный массив:

int[][] intArray = new int;

В этом примере создается двумерный массив элементов int. Он содержит 10 элементов в первом измерении и 20 во втором. Другими словами, массив массивов имеет пространство для 10 массивов int, а каждый массив int имеет пространство для 20 элементов int.

Для получения доступа к элементам в многомерном массиве с одним индексом на измерение нужно использовать два индекса. Вот пример:

int[][] intArray = new int;

intArray = 129;

int oneInt = intArray;

Переменная с именем oneInt будет содержать значение 129 после выполнения последней строки кода Java.

Нахождение минимального и максимального значения в массивах

В Java нет встроенных функций для поиска минимального и максимального значения, поэтому нужно сделать это самостоятельно.

Как находить минимальное значение в массиве:

int[] ints = {0,2,4,6,8,10};

int minVal = Integer.MAX_VALUE;

for(int i=0; i < ints.length; i++){
    if(ints < minVal){
        minVal = ints;
    }
}

System.out.println("minVal = " + minVal);

Вначале в примере для minVal устанавливается значение Integer.MAX_VALUE. Оно является максимально возможным значением, которое может принимать int. Это сделано для того, чтобы убедиться, что начальное значение не случайно меньше, чем наименьшее значение в массиве.

Во-вторых, пример перебирает массив и сравнивает каждое значение с minValue. Если элемент в массиве меньше minVal, тогда minVal устанавливается в значение элемента.

Наконец, минимальное значение, найденное в массиве, распечатывается. В приведенном выше примере минимальное значение равно 0.

Как найти максимальное значение:

int[] ints = {0,2,4,6,8,10};

int maxVal = Integer.MIN_VALUE;
for(int i=0; i < ints.length; i++){
    if(ints > maxVal){
        maxVal = ints;
    }
}
System.out.println("maxVal = " + maxVal);

В этом примере будет распечатано значение 10.

Основными отличиями в нахождении минимального значения являются инициализация maxVal и сравнение maxVal с элементами в массиве.

Метод Arrays.deepToString()

Но если вы с помощью метода попробуете преобразовать в строку (вывести на экран) двумерный массив, увидите кое-что знакомое:

А все дело в том, что в ячейках двумерного массива хранятся ссылки на одномерные массивы. А одномерные массивы как преобразовываются в строку? Именно так, как вы видите выше.

И что же делать? Как нам получить правильное отображение двумерного массива?

Для этого у класса есть еще один специальный метод — . Вызов его выглядит так:

В этот метод можно передать двумерный, одномерный, трехмерный и вообще массив любой размерности, и он всегда будет отображать элементы массива.Обрати внимание: метод не работает с одномерными массивами примитивов (например, ). Примеры:

Примеры:

Переменная будет содержать строковое значение:

Переменная будет содержать строковое значение:

Переменная будет содержать строковое значение:

Многомерные массивы

Для создания многомерных массивов используются дополнительные скобки:

Также массив может создаваться ключевым словом new:

Двумерный массив

Двумерный массив — это массив одномерных массивов. Если вам нужен двумерный массив, то используйте пару квадратных скобок:

Представляйте двумерный массив как таблицу, где первые скобки отвечают за ряды, а вторые — за колонки таблицы. Тогда пример выше представляет собой таблицу из четырёх рядов и трёх колонок.

1 Васька 121987102
2 Рыжик 2819876107
3 Барсик 412345678
4 Мурзик 587654321

Для двумерных массивов часто используются два цикла for, чтобы заполнить элементы данными слева направо и сверху вниз. Напишем такой код:

В данном примере мы сначала заполнили двухмерный массив данными, а затем снова прошлись по этому массиву для считывания данных.

Логическое представление данного двухмерного массива будет выглядеть следующим образом:

Первое число в скобках обозначают ряд (строку), а второе число — столбец. Принято считать, что в массиве new int первый размер означает количество строк, а второй — количество столбцов.

На экране после запуска примера мы увидим следующее:

При резервировании памяти под многомерный массив необходимо указать память только для первого измерения. Для остальных измерений память можно выделить отдельно.

В данном примере особого смысла в этом нет.

Еще одна интересная особенность при создании массива связана с запятой. Посмотрите на пример.

Вроде в конце используется лишняя запятая, но её наличие не приведёт к ошибке (только одна запятая). Это бывает удобно, когда надо скопировать или вставить кусок массива в коде. Кстати, метод deepToString() класса Arrays очень удобен для вывода двухмерных массивов.

Чтобы совсем сбить вас с толку, приведу ещё один правильный пример.

Я уже упоминал, что квадратные скобки можно использовать двумя способами. Сначала мы поставили скобки у типа переменной, а потом у имени переменной. При этом мы использовали в качестве имени имя класса Integer. Однако, Java догадывается, что на этот раз используется не класс, а имя и разрешает такой синтаксис. Но лучше так не выпендриваться.

Размер имеет значение

Размер двумерного массива измеряется интересным способом. Длина массива определяется по его первой размерности, то есть вычисляется количество рядов.

А если мы хотим узнать количество столбцов в ряду? Тогда указываете ряд, а затем вычисляете у него количество столбцов.

Не забывайте, что в массивах ряды могут содержать разное количество столбцов.

Динамический массив в Java

Минус массива — статичность, то есть необходимость задавать размер заранее. Для этого и придумали динамический массив, который может менять размер в процессе выполнения программы.
Например, статические массивы работают по следующей схеме:

А динамические массивы в Java функционируют несколько иначе:

Так как для копирования массива используется специальная нативная функция, проблем с «переездом» не возникает.

В общем, как вы уже догадались, динамические массивы применяются во время обработки наборов однородных данных, размер которых на момент написания программы нам неизвестен.

Array Copy With Object.clone()

Object.clone() is inherited from Object class in an array.

Let’s first copy an array of primitive types using clone method:

And a proof that it works:

The above example shows that have the same content after cloning but they hold different references, so any change in any of them won’t affect the other one.

On the other hand, if we clone an array of non-primitive types using the same method, then the results will be different.

It creates a shallow copy of the non-primitive type array elements, even if the enclosed object’s class implements the Cloneable interface and overrides the clone() method from the Object class.

Let’s have a look at an example:

We can test our implementation by creating a new array of addresses and invoking our clone() method:

This example shows that any change in the original or copied array would cause the change in the other one even when the enclosed objects are Cloneable.

Append a New Item to an Array

As we know, arrays hold a fixed size of values. Therefore, we can’t just add an item and exceed this limit.

We’ll need to start by declaring a new, larger array, and copy the elements of the base array to the second one.

Fortunately, the Arrays class provides a handy method to replicate the values of an array to a new different-sized structure:

Optionally, if the ArrayUtils class is accessible in our project, we can make use of its add method (or its addAll alternative) to accomplish our objective in a one-line statement:

As we can imagine, this method doesn’t modify the original array object; we have to assign its output to a new variable.

Типы данных в Java

  • Примитивы. (byte, short, char, int, float, long, double, boolean).
  • Объекты. Размер объекта зависит от конкретной реализации VM и архитектуры процессора. Поэтому дать однозначный ответ не получится. Все же хочется понять (на примере конкретной VM) какой размер памяти выделяется под java-объект.
  • Массивы. Одномерные линейные структуры, которые могут содержать все перечисленные типы (включая другие массивы). Массивы также являются объектами, но со специфичной структурой.

Примитивы

С размером примитивов все понятно — их размер определен в спецификации языка () и спецификации jvm (). Интересно заметить, что для типа boolean jvm использует int, а не byte как могло бы показаться (). Также интересно, что при создании массива boolean[] под каждый элемент массива будет выделен 1 байт, а не 4.

тип размер (байт) размер в массиве (байт) допустимые значения
byte 1 1 -128 .. 127
short 2 2 -32768 .. 32767
chart 2 2 ‘\u0000’ .. ‘\uffff’
int 4 4 -2147483648 .. 2147483647
float 4 4 -3.4028235e+38f .. 3.4028235e+38f
long 8 8 -9223372036854775808 .. 9223372036854775807
double 8 8 -1.7976931348623157e+308 .. 1.7976931348623157e+308
boolean 4 1 false, true

Объекты

Для описания экземпляров массивов Hotspot использует класс arrayOopDesc, для описания остальных Java-классов используется класс instanceOopDesc. Оба эти класса наследуются от oopDesc и оба содержат методы для вычисления размера заголовка. Так например a instabceOopDesc вычисляет размер заголовка (в машинных словах) следующим образом:

где HeapWordSize определяется как размер указателя. В зависимости от архитектуры CPU 4 и 8 байт для x86 и x86_64 (в Oracle именуют x64) соответственно.
Чтобы понять размер instanceOopDesc надо заглянуть в oopDesc, так как в самом instanceOopDesc никаких полей не объявлено. Вот что мы там увидим:

В файле oopsHierarchy.hpp объявлены необходимые типы данных для работы с иерархией объектов oop (ordinary object pointer). Посмотрим как объявлены те типы, которые используются в oopDesc:

То есть это два указателя (читай два машинных слова) для конкретной архитектуры — так называемое маркировочное слово (mark word) и адрес (который может быть представлен указателем или смещением) на метаданные класса.
Идея этого union metadata состоит в том, что при включенной опции будет использоваться 32х битное смещение (_compressed_klass) а не 64х битный адрес (_klass).
Получается размер заголовка java-объекта 8 байт для x86 и 16 байт для x86_64 в не зависимости от параметра UseCompressedOops:

Архитектура -XX:+UseCompressedOops -XX:-UseCompressedOops
x86 8 байт ()
x86_64 16 байт ()

Массивы

В arrayOopDesc размер заголовка вычисляется следующим образом:

где

  • align_size_up — инлайнер для выравнивания первого аргумента по второму. Например .
  • length_offset_in_bytes — возвращает размер заголовка в байтах в зависимости от опции . Если она включена, то размер равен = 8 (4 + 4) байт для x86 и 12 (8 + 4) байт для x86_64. При выключенной опции размер равен = 8 байт для x86 и 16 байт для x86_64.
  • заметьте, что к вычисленному размеру прибавляется . Это делается для того чтобы «зарезервировать место» под поле length массива, так как оно явно не определено в классе. При включенной ссылочной компрессии (актуально только для 64x битной архитектуры) это поле займет вторую половину поля _klass (см. класс oopDesc)

Посчитаем, что у нас получается. Размер заголовка массива после выравнивания:

Архитектура -XX:+UseCompressedOops -XX:-UseCompressedOops
x86 12 байт ()
x86_64 16 байт () 24 байта ()

Выравнивание

Для предотвращения ситуаций ложного совместного использования строки кэша (cache-line false sharing) размер объекта в Hotspot выравнивается по 8 байтовой границе. То есть если объект будет занимать даже 1 байт под него выделится 8 байт. Размер границы выравнивания выбирается таким образом, чтобы строка кэша была кратна этой границе, а также эта граница должна быть степенью двойки, а также кратна машинному слову. Так как у большинства современных процессоров размер строки кэша составляет 64 байта, а размер машинного слова — 4/8 байт, то размер границы был выбран равным 8 байт. В файле globalDefinitions.hpp есть соответствующие определения (строки 372 — 390). Здесь не буду приводить, интересующиеся могут сходить и посмотреть.

Начиная с версии jdk6u21 размер выравнивания стал настраиваемым параметром. Его можно задать при помощи параметра . Допустимы значения 8 и 16.

Setting up an Array

Now that arrays are well-defined, let’s dive into their usages.

We’ll cover a lot of topics teaching us how to use arrays. We’ll learn some basics like how to declare and initialize an array, but we’ll also cover more advanced subjects like sorting and searching arrays.

Let’s go first with declaration and initialization.

3.1. Declaration

We’ll begin with the declaration. There are two ways to declare an array in Java:

or:

The former is more widely used than the latter.

3.2. Initialization

Now that it’s time to see how to initialize arrays. Again there are multiple ways to initialize an array. We’ll see the main ones here, but this article covers arrays initialization in detail.

Let’s begin with a simple way:

By using this method, we initialized an array of ten int elements. Note that we need to specify the size of the array.

When using this method, we initialize each element to its default value, here 0. When initializing an array of Object, elements are null by default.

We’ll now see another way giving us the possibility to set values to the array directly when creating it:

Here, we initialized a five element array containing numbers 1 to 5. When using this method we don’t need to specify the length of the array, it’s the number of elements then declared between the braces.

Быстрая инициализация массива в Java

Массивы — очень полезная вещь, поэтому разработчики Java постарались сделать работу с ними максимально удобной.

И первое, что они сделали — это упростили инициализацию массива, занесение в него стартовых значений.

Ведь очень часто, кроме данных, которая программа откуда-то считывает, ей для работы нужны еще свои внутренние данные. Например, нам нужно хранить в массиве длины всех месяцев. Как может выглядеть этот код:

Но есть способ записать его короче — спасибо создателям Java:

Можно просто перечислить через запятую все значения массива!

Удобно, да? Но и это еще не все.

Оказывается компилятор может определить тип контейнера (объекта-массива) на основе типа переменной-массива. А для определения длины массива — банально подсчитать количество элементов, написанных в фигурных скобках.

Поэтому этот код можно записать еще короче:

Разве не красота?

Такая запись называется «быстрая инициализация массива». Она, кстати, работает не только для типа …

Объявление массива

Переменная массива Java объявляется точно так же, как и переменная нужного типа, за исключением добавления [] после типа. Вот простой пример объявления:

int[] intArray;

Вы можете использовать массив в качестве поля, статического поля, локальной переменной или параметра, как и любую другую переменную. Ведь это просто вариация типа данных. Вместо того, чтобы быть единственной переменной этого типа, это набор переменных этого типа.

Вот еще несколько примеров объявления:

String[]  stringArray;

MyClass[] myClassArray;

Первая строка объявляет массив ссылок String. Во второй строке объявляется массив ссылок на объекты класса MyClass, созданного пользователем.

У вас есть выбор места для квадратных скобок []. Первое вы уже видели, второе находится после имени переменной. Следующие объявления равнозначные:

int[] intArray;
int   intArray[];

String[] stringArray;
String   stringArray[];

MyClass[] myClassArray;
MyClass   myClassArray[];

Лучше указывать квадратные скобки [] после типа данных (например, String []), тогда код легче читать.

Заполнение Arrays.fill()

Класс Arrays имеет набор методов с именем fill(), которые могут заполнять массив заданным значением. Это проще, чем перебирать массив и вставлять значение самостоятельно. Вот пример использования Arrays.fill() для заполнения массива int:

int[] intArray = new int;

Arrays.fill(intArray, 123);

System.out.println(Arrays.toString(intArray));

В этом примере создается массив int и заполняется значение 123 во всех элементах массива. Последняя строка примера преобразует массив в строку и выводит его на консоль:

Существует версия метода Arrays.fill(), которая принимает значения from и to index, поэтому только элементы с индексами в этом интервале заполняются заданным значением:

int[] intArray = new int;

Arrays.fill(ints2, 3, 5, 123) ;

System.out.println(Arrays.toString(intArray));

Этот пример заполняет только те элементы, которые имеют индексы 3 и 4(от 3 до 5 без 5) значением 123. Вывод:

0, 0, 0, 123, 123, 0, 0, 0, 0, 0]

Метод Arrays.fill()

Очень часто у Java-программистов при работе с массивами возникает задача: заполнить массив одинаковыми значениями. Можно, конечно, написать цикл и просто в цикле присвоить каждой ячейке массива определенное значение:

А можно просто вызвать метод , который делает точно то же самое: заполняет переданный массив переданным значением. Вот как это выглядит:

И код из примера выше можно сделать немного компактнее и понятнее:

А еще с помощью метода можно заполнить определенным значением не весь массив, а его часть:

Где первый и последний — это номера первой и последней ячеек, которые нужно заполнить.

По старой доброй традиции Java, последний элемент не входит в диапазон.

Пример:

Заполняем ячейки , , , значениями . Нумерация ячеек массива с нуля!
Переменная содержит значение:

Метод работает только с одномерными массивами. Если в него передать двумерный массив, он будет обработан как одномерный, со всеми вытекающими последствиями.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector