Импульсный блок питания: характерные особенности

Как протравить плату

Подготовленную и просушенную плату поместите в раствор хлорного железа. Насыщенность его должна быть такой, чтобы медь как можно быстрее разъедалась. Если процесс идет медленно, то рекомендуется увеличить концентрацию хлорного железа в воде. Если и это не помогает, то попробуйте нагреть раствор. Для этого наберите в емкость воду, установите в нее банку с раствором (не забывайте о том, что его желательно хранить в пластиковой или стеклянной таре) и нагревайте на медленном огне. Теплая вода будет нагревать раствор хлорного железа.

Если у вас много времени либо нет хлорного железа, то воспользуйтесь смесью из соли и медного купороса. Плата подготавливается аналогичным образом, после чего помещается в раствор. Недостаток способа – плата блока питания травится очень медленно, потребуются почти сутки для полного исчезновения всей меди с поверхности текстолита. Но за неимением лучшего, можно использовать и такой вариант.

Сравнение импульсного и обычного блоков питания

Сравним эти два типа устройств, определив, какие лучше использовать в той или иной ситуации.

Тип блока питания


Обычный (трансформаторный)


Импульсный

Принцип работы

Напряжение сначала понижается, а затем выравнивается

Напряжение сначала преобразуется, а затем понижается

Использование

Некоторые высокоточные и чувствительные к ВЧ-помехам устройства

Практически повсеместно

Коэффициент полезного действия

Небольшой, особенно с учётом потерь на стабилизаторе

Как правило, 98%

Габариты

Как правило, крупные

Как правило, малые

Высокочастотные помехи в выходном токе

Нет

Могут быть

Требование максимальной и минимальной мощностей нагрузки

Нет

Да

При прочих равных предпочтительнее использовать импульсные БП. Они обеспечивают больший КПД, а ещё весят от нескольких десятков граммов. Но в некоторых высокоточных, прецизионных устройствах лучше применять обычные (трансформаторные) модели, поскольку они не засоряют выходной сигнал помехами.

Ремонт телевизора

О неисправности телевизионного модуля питания прежде всего свидетельствует отсутствие свечение диода «спящего» режима. Первыми ремонтными операциями являются:

проверка на целостность (отсутствие обрыва) питающего шнура напряжения;
разборка телевизионного приемника и освобождение электронной платы;
осмотр платы блока питания, на наличие внешне неисправных деталей (вздувшихся конденсаторов, пригоревших мест на печатной плате, лопнувших корпусов, обугленной поверхности резисторов);
проверка мест пайки, при этом особое внимание уделяется пропайке контактов импульсного трансформатора.

Если визуально установить дефектную деталь не удалось, то необходимо последовательно проверить работоспособность предохранителя, диодов, электролитических конденсаторов и транзисторов. К сожалению, если вышли из строя управляющие микросхемы, установить их неисправность можно только косвенным способом – когда при полностью исправных дискретных элементах работоспособное состояние блока питания не наступает.

В практике ремонта имеют место случаи, когда модуль питания не работает (не запускается) а предохранитель не сгорел. Это может свидетельствовать о пробое (перегорании) транзистора генератора высокочастотных импульсов.

Наиболее частыми причинами неработоспособности телевизионных блоков является:

  • обрыв балластных сопротивлений;
  • неработоспособность (короткое замыкание) Высоковольтного фильтрующий конденсатор;
  • неисправность конденсаторов фильтров вторичного напряжения;
  • пробой или перегорание выпрямительных диодов.

Проверку всех этих деталей (кроме выпрямительных диодов) можно произвести, не выпаивая их из платы. Если удалось определить неисправную деталь, то ее заменяют и приступают к проверке выполненного ремонта. Для этого на место предохранителя устанавливают лампу накаливания и включают устройство в сеть.

Здесь возможны несколько вариантов поведения отремонтированного устройства:

  1. Лампочка вспыхивает и притухает, загорается светодиод спящего режима, на экране появляется растр. В этой ситуации в первую очередь замеряют напряжение строчной развёртки. При его завышенной величине необходимо проверить и заменить гарантированно исправными электролитические конденсаторы. Аналогичная ситуация проявляется при неисправности оптронных пар.
  2. Если лампочка вспыхивает и гаснет, светодиод не загорается, растр отсутствует значит не запускается генератор импульсов. В этом случае проверяется уровень напряжения на электролитическом конденсаторе фильтра высоковольтной части. Если оно ниже 280,0…300,0 вольт, то наиболее вероятны следующие неисправности:

    пробит один из диодов выпрямительного моста;

Если напряжение отсутствует необходим повторно проверить целостность цепей питания и всех диодов выпрямителя высокого напряжения.

Если свечение лампочки велико, необходимо тут же отключить модуль питания от сети и заново провести проверку всех электронных деталей.

Вышеперечисленная последовательность и схема проверки позволяют выявить основные неисправности питающего устройства телевизионного приемника.

Принцип работы инвертора напряжения

Представим, что у нас имеется источник электрической энергии постоянного тока такой, как аккумулятор или гальванический элемент и потребитель (нагрузка), который работает только от переменного напряжения. Как преобразовать один вид энергии в другой? Решение было найдено довольно просто. Достаточно подключить аккумулятор к потребителю сначала одной полярностью, а затем через короткий промежуток отключить аккумулятор, а потом снова подключить, но уже обратной полярностью. И такие переключения повторять все время через равные промежутки времени. Если выполнять таких переключений 50 раз за секунду, то на потребитель будет подаваться переменное напряжение частотой 50 Гц. Роль переключателей чаще всего выполняют транзисторы или тиристоры, работающие в ключевом режиме.

На схеме, приведенной ниже, изображен источника питания Uип с клеммами 1-2 и потребитель RнLн, обладающий активно-индуктивным характером, с клеммами 3-4. В один момент времени потребитель клеммами 3-4 подключается к клеммам 1-2 Uип, при этом I от Uип протекает в направлении LнRн, а в следующий момент клеммы 3-4 изменяют свое положение и I протекает в противоположном направлении относительно потребителя электрической энергии.

Импульсный трансформатор: принцип действия и функциональные особенности

Трансформатор представляет собой достаточно сложное техническое устройство, основной функцией которого служит преобразование определенных свойств и качеств электрической энергии, таких, как напряжение или крутящий момент. Также современный трансформатор способен превращать переменный ток в постоянный и наоборот.

Среди огромного разнообразия используемых в настоящее времяприборов особо следует выделить их импульсные разновидности.

Импульсный трансформатор широко используется в системах связи, ВТ, устройствах автоматики, для внесения изменений амплитуды импульсов, а также их полярности. Главное условие для успешной работы данного вида прибора состоит в том, что искажение сигнала, который передается с его помощью, должно быть минимальным.

Импульсный трансформатор основывается в своей деятельности на следующем принципе: в то время как на его вход поступают прямоугольные импульсы определенного напряжения, в первичной обмотке постепенно появляется электрический ток, сила которого постепенно начинает увеличиваться. Это, в свою очередь, повлечет за собой изменение магнитного поля и появление электродвижущей силы во вторичной обмотке. В этом случае искажения сигнала практически не происходит, а возможные потери тока настолько малы, что ими можно пренебречь.

Что касается отрицательной части импульса, появление которой неизбежно в то время, как импульсный трансформатор выходит на проектную мощность, то его влияние можно свести к минимуму, установив простой диод во вторичную обмотку. Тем самым и здесь импульс станет максимально близким к прямоугольному.

Импульсный трансформатор отличается от других разновидностей данной технической системы тем, что работает исключительно в ненасыщенном режиме. Его магнитопровод изготавливается из специального сплава, который в обязательном порядке обладает значительной пропускной способностью магнитного поля.

Помимо импульсных, в современной энергетической и электронной промышленности используют следующие основные виды трансформаторов:

  1. Деятельность ни одного современного радиоприбора невозможна без силовых трансформаторов. Их деятельность многогранна: с одной стороны, они необходимы для того, чтобы приемники можно было запитывать от обычной сети с переменным током, а с другой, для того, чтобы повышать или понижать напряжение той или иной частоты в усилителях. С этой функцией связана и важная конструктивная особенность силовых трансформаторов – вместо стальных сердечников здесь используют вставки из магнетита или карбонильного железа.
  2. Еще одной разновидностью прибора, применяемого преимущественно в современных системах слежения и бортовых компьютерах самолетов, является вращающийся трансформатор. Его принцип действия заключается в том, что угол поворота рамки преобразуется в напряжение электрического тока. Внешне вращающийся трансформатор представляет собой небольшую электрическую машину, работающую исключительно от переменного тока. Кроме того, в зависимости от того, где эти трансформаторы применяются, они могут быть как двухполюсными, так и многополюсными.
  3. В зависимости от того, какой ток поступает на первичную обмотку, выделяют трансформаторы переменного и постоянного тока. Основной вид первого типа – автотрансформатор, который состоит исключительно из одной катушки, которая непосредственно включается в электрическую цепь. Данный вид приборов предназначен исключительно для понижения напряжения и только для очень маленьких токов. Трансформатор постоянного тока – это более сложный прибор, состоящий из динамомашины и двигателя. В этом случае первичный ток вырабатывается двигатель, а вторичный – динамомашиной, которая приводится в движение тем же электродвигателем. Нередко встречается ситуация, когда трансформатор постоянного тока представляет собой двигатель и динамомомашину, соединенные между собой одним металлическим каркасом. Делается это для экономии материала, а также для повышение качества работы прибора.

Пошаговая инструкция

Процесс изготовления импульсного БП выглядит так:

  • выполняют расчет изделия в онлайн-калькуляторе (публикуются на многих сайтах) или специальной программе. В зависимости от желаемых характеристик БП, ПО подберет параметры всех элементов: конденсаторов, транзисторов, дросселей и пр.;
  • закупают все радиодетали;
  • в пластине текстолита в соответствии со схемой и размерами элементов высверливают отверстия. Далеко не всегда удается добиться желаемых характеристик с первого раза, ввиду чего схему приходится дополнять компенсаторами и прочими элементами. Необходимо оставить для них место на плате;
  • на схеме выбирают точки входа, помеченные символами «АС», припаивают предохранитель и далее один за другим все элементы согласно схеме;
  • выполняют проверку.

Важно найти подходящую схему и правильно рассчитать параметры элементов. https://www.youtube.com/embed/Bn3TCXfkyew

Достоинства и недостатки

Импульсный преобразователь имеет следующие достоинства:

  1. Высокий показатель коэффициента стабилизации позволяет обеспечить условия питания, которые не будут вредить чувствительной электронике.
  2. Рассматриваемые конструкции обладают высоким показателем КПД. Современные варианты исполнения имеют этот показатель на уровне 98%. Это связано с тем, что потери снижены до минимума, о чем говорит малый нагрев блока.
  3. Большой диапазон входного напряжения – одно из качеств, из-за которого распространилась подобная конструкция. При этом, КПД не зависит от входных показателей тока. Именно невосприимчивость к показателю напряжения тока позволяет продлить срок службы электроники, так как в отечественной сети электроснабжения прыжки показателя напряжения частое явление.
  4. Частота входящего тока оказывает влияние на работу только входных элементов конструкции.
  5. Малые габариты и вес, также обуславливают популярность из-за распространения портативного и переносного оборудования. Ведь при использовании линейного блока вес и габариты увеличиваются в несколько раз.
  6. Организация дистанционного управления.
  7. Меньшая стоимость.

Есть и недостатки:

  1. Наличие импульсных помех.
  2. Необходимость включения в цепь компенсаторов коэффициента мощности.
  3. Сложность самостоятельного регулирования.
  4. Меньшая надежность из-за усложнения цепи.
  5. Тяжелые последствия при выходе одного или нескольких элементов цепи.

При самостоятельном создании подобной конструкции, следует учитывать то, что допущенные ошибки могут привести к выходу из строя электропотребителя. Поэтому нужно предусмотреть наличие защиты в системе.

Чем отличается от трансформаторного блока питания

Блок-схемы трансформаторного и импульсного блоков питания

Как работает трансформаторный блок питания

В линейном блоке питания основное преобразование происходит при помощи трансформатора. Его первичная обмотка рассчитана под сетевое напряжение, вторичная обычно понижающая. В случае классического трансформатора переменного тока, предложенного П. Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки.

Следующий блок — выпрямитель, на котором синусоида сглаживается, превращается в пульсирующее напряжение. Этот блок выполнен на основе выпрямительных диодов. Диод может стоять один, может быть установлен диодный мост (мостовая схема). Разница между ними — в частоте импульсов, которые получаем на выходе. Дальше стоит стабилизатор и фильтр, придающие выходному напряжению нужный уровень и форму. На выходе имеем постоянное напряжение.

Самый простой линейный блок питания с двухполупериодным выпрямителем без стабилизации

Основной недостаток линейных источников питания — большие габариты. Они зависят от размеров трансформатора — чем выше требуется мощность, тем больше размеры блока питания. Нужен еще стабилизатор, который корректирует выходное напряжение, а это еще увеличивает габариты, снижает КПД. Зато это устройство не грозит помехами работающему рядом оборудованию.

Устройство импульсного блока питания и его принцип работы

В импульсном блоке питания преобразование сложнее. На входе стоит сетевой фильтр, задача которого не допустить в сеть высокочастотные колебания, вырабатываемые этим устройством. Они могут повлиять на работу рядом расположенных приборов. Сетевой фильтр в дешевых моделях стоит не всегда, и в этом зачастую кроется проблема с нестабильной работой каких-то устройств, которые мы часто списываем на «падение напряжения в сети».

Далее стоит сглаживающий фильтр, который выпрямляет синусоиду. Полученное на его выходе пилообразное напряжение подается на инвертор, преобразуется в импульсы, имеющие положительную и отрицательную полярность

Их параметры (частота и скважность) задаются при помощи блока управления. Частота обычно выбирается высокой — от 10 кГц до 50 кГц

Именно наличие этой ступени преобразования — генерации импульсов — и дало название этому типу преобразователей.

Блок-схема ИИП с формами напряжения в ключевых точках

Высокочастотные импульсы поступают на трансформатор, который является гальванической развязкой от сети. Трансформаторы эти небольшие, так как с возрастанием частоты сердечники нужны все меньше. Причем сердечник может быть набран из ферромагнитных пластин (в линейных БП должен быть из более дорогой электромагнитной стали).

На выходном выпрямителе биполярные импульсы превращаются в положительные, а выходной фильтр на их основе формирует постоянное напряжение. Основное достоинство ИБП в том, что существует обратная связь, которая позволяет регулировать работу устройства таким образом, чтобы напряжение на выходе было близко к идеалу. Это дает возможность получать стабильные параметры на выходе, независимо от того, что имеем на входе.

Достоинства и недостатки импульсных блоков питания

Для новичков не сразу становится понятным, почему лучше использовать импульсные выпрямители, а не линейные. Дело не только в габаритах и материалоемкости. Дело в более стабильных параметрах, которые выдают импульсные устройства. Качество напряжения на выходе не зависит от качества сетевого напряжения. Для наших сетей это актуально. Но не только это. Такое свойство позволяет использовать импульсный блок питания в сети разных стран. Ведь параметры сетевого напряжения в России, Англии и в некоторых странах Европы отличаются. Не кардинально, но отличается напряжение, частота. А зарядки работают в любой из них — практично и удобно.

Размер тоже имеет значение

Кроме того импульсники имеют высокий КПД — до 98%, что не может не радовать. Потери минимальны, в то время как в трансформаторных много энергии уходит на непродуктивный нагрев. Также ИБП меньше стоят, но при этом надежны. При небольших размерах позволяют получить широкий диапазон мощностей.

Но импульсный блок питания имеет серьезные недостатки. Первый — они создают высокочастотные помехи. Это заставляет ставить на входе сетевые фильтры. И даже они не всегда справляются с задачей. Именно поэтому некоторые устройства, особо требовательные к качеству электропитания, работают только от линейных БП. Второй недостаток — импульсный блок питания имеет ограничение по минимальной нагрузке. Если подключенное устройство обладает мощностью ниже этого предела, схема просто не будет работать.

Импульсный преобразователь 12-220В на 300 Вт

Эта схема проста, детали доступны, большинство из них можно извлечь из блока питания для компьютера или купить в любом радиотехническом магазине. Достоинство схемы — простота реализации, недостаток — неидеальная синусоида на выходе и частота выше стандартных 50 Гц. То есть, к данному преобразователю нельзя подключать устройства, требовательные к электропитанию. К выходу напрямую можно подключать не особ чувствительные приборы — лампы накаливания, утюг, паяльник, зарядку от телефона и т.п.

Представленная схема в нормальном режиме выдает 1,5 А или тянет нагрузку 300 Вт, по максимуму — 2,5 А, но в таком режиме будут ощутимо греться транзисторы.

Преобразователь напряжения 12 220 В: схема преобразователя на основе ШИМ-контролллера

Построена схема на популярном ШИМ-контроллере TLT494. Полевые транзисторы  Q1 Q2 надо размещать на радиаторах, желательно — раздельных. При установке на одном радиаторе, под транзисторы уложить изолирующую прокладку. Вместо указанных на схеме IRFZ244 можно использовать близкие по характеристикам IRFZ46 или RFZ48.

Частота в данном преобразователе 12 В в 220 В задается резистором R1 и конденсатором C2. Номиналы могут немного отличаться от указанных на схеме. Если у вас есть старый нерабочий беспербойник для компьютера, а в нем — рабочий выходной трансформатор, в схему можно поставить его. Если трансформатор нерабочий, из него извлечь ферритовое кольцо и намотать обмотки медным проводом диаметром 0,6 мм. Сначала мотается первичная обмотка — 10 витков с выводом от середины, затем, поверх — 80 витков вторичной.

Как уже говорили, такой преобразователь напряжения 12-220 В может работать только с нагрузкой, нечувствительной к качеству питания. Чтобы была возможность подключать более требовательные устройства, на выходе устанавливают выпрямитель, на выходе которого напряжение близко к нормальному (схема ниже).

Для улучшения выходных характеристик добавляют выпрямитель

В схеме указаны высокочастотные диоды типа HER307, но их можно заменить на серии FR207 или FR107. Емкости желательно подобрать указанной величины.

Рекомендации по выбору блока питания

Когда возникает необходимость покупки нового блока питания
ATX, то вначале необходимо определится с мощностью, которая необходима для питания компьютера, в который этот БП будет установлен. Для ее определения достаточно просуммировать мощности компонентов, используемых в системе, например воспользовавшись специальным калькулятором. Если нет такой возможности, то можно исходить из правила, что для среднестатистического компьютера с одной игровой видеокартой вполне хватает блока питания мощностью 500–600 ватт.

Учитывая, что большинство параметров блоков питания можно узнать только протестировав его, следующим этапом настоятельно рекомендуем ознакомиться с тестами и обзорами возможных претендентов — моделей блоков питания
, которые доступны в вашем регионе и удовлетворяю ваши запросы как минимум по обеспечиваемой мощности. Если же таковой возможности нет, то выбирать необходимо по соответствию блока питания современным стандартам (чем большему числу, тем лучше), при этом желательно наличие в блоке питания схемы АККМ (APFC)

Приобретая блок питания, также важно включить его, по возможности прямо на месте покупки или сразу по приходу домой, и проследить, как он работает, чтоб источник питания не издавал писков, гудения или другого постороннего шума.

В общем, необходимо выбрать блок питания, который был бы мощным, качественно сделанным, с хорошими заявленными и реальными электрическими параметрами, а также окажется удобным в эксплуатации и тихим во время работы, даже при высокой нагрузке на него. И ни в коем случае при покупке источника питания не стоит экономить пару долларов. Помните, что от работы этого устройства главным образом зависит стабильность, надежность и долговечность работы всего компьютера.

Самостоятельная и качественная пайка

  1. Предметы первой необходимости при ремонте это паяльник, канифоль и «отсос». Отсос – механический (или электрический) прибор, который применяется во время выпаивания элементов и служит для предотвращения перегрева во время пайки. Принцип его работы заключается в резком втягивании в себя расплавленного олова, которое при сильном нагреве может вывести радиоэлемент из строя. Особенно это касается интегральных микросхем, которые очень чувствительны к таким температурным скачкам. Отсосы бывают механические и электрические. Хорошо и правильно подобранный по мощности паяльник в сочетании с отсосом являются отличным тандемом для качественной пайки.
  2. Для выпаивания и обратной установки необходимых радиоэлементов можно пользоваться не только паяльником и отсосом, но и термовоздушной паяльной станцией. Её несложно соорудить и самому. Обычный вентилятор можно использовать в качестве нагнетателя, а спираль буде нагревающим элементом. Схема на тиристоре будет оптимальным вариантом для регулировки температуры. Такая станция ещё удобна и для прогрева всех подозрительных и некачественных паек, которые могут стать причиной появления микротрещин, и как результат – плохого контакта.

Правильная и качественная пайка является одним из основополагающих навыков, которым должен овладеть любой начинающий радиолюбитель. От этого зависит конечный результат всего ремонта и срок дальнейшей эксплуатации отремонтированного прибора.

Диагностирование и простейший ремонт

Человеку, собирающему попытаться отремонтировать блок питания бытовой электронной техники надо быть заранее готовым к тому, что не всякое питающее устройство можно отремонтировать. Сегодня некоторые производители, выпускают электронику, блоки которой подлежат не ремонту, а комплектной замене.

Ни один мастер не возьмется за ремонт такого блока питания, ибо изначально он предназначен для полного демонтажа старого устройства с заменой на новое. Часто подобные электронные приборы просто залиты каким-либо компаундом, что сразу снимает вопрос о его ремонтопригодности.

Как показывает статистика, основные неисправности блока питания вызваны:

  • неисправностью высоковольтной части (40,0%), которые выражаются пробоем (перегоранием) диодного моста и выходом из строя фильтрующего конденсатора;
  • пробоем силового полевого или биполярного транзистора (30,0%), формирующего высокочастотные импульсы и находящегося в высоковольтной части;
  • пробоем диодного моста (15,0%) в низковольтной части;
  • пробоем (выгоранием) обмоток дросселя выходного фильтра.

В остальных случаях диагностирование достаточно сложно и без специальных приборов (осциллограф, цифровой вольтметр) выполнить его не удастся. Поэтому если неисправность блока питания вызвана не четырьмя вышеупомянутыми основными причинами, не стоит заниматься его домашним ремонтом, а сразу вызвать мастера для замены или приобретать новое питающее устройство.

Неисправности высоковольтной части достаточно просто обнаружить. Они диагностируются перегоранием предохранителя и отсутствием напряжения после него. Третий и четвертый случай можно предположить если предохранитель исправен, напряжение на входе низковольтного блока присутствует, а входное отсутствует.

При перегорании предохранителя необходимо осмотреть электронную плату. Неисправность фильтрующего электролитического конденсатора обычна выражена его вздутием. Для проверки диодов высоковольтной выпрямительной части придется выпаять каждый из них и проверить мультиметром (тестером).

Желательно проверку производить одновременно всех деталей. При выгорании нескольких электронных элементов при замене одного из них на исправный он может выгореть повторно из-за комплексной неисправности, которая не была устранена.

После замены деталей необходимо установить новый предохранитель и включить блок питания. Как правило после этого блок питания начинает работать.

Если предохранитель не перегорел, а напряжение на выходе блока питания отсутствует, то причина неисправности в пробое выпрямительных диодов низковольтной части, перегорании дросселя или выходе электролитических конденсаторов вторичного выпрямительного блока.

Неисправность конденсаторов диагностируется при их вздутии или вытекании из их корпуса жидкости. Диоды необходимо выпаять и проверить тестером аналогично проверке высоковольтной части. Целостность дроссельной обмотки проверяется тестером. Все неисправные детали необходимо заменить.

Если не удается найти нужный дроссель, то некоторые «умельцы» перематывают сгоревший, подобрав провод подходящего диаметра и определив количество витков. Такая работа довольно кропотлива и обычно выполняется только для уникальных блоков питания, найти аналог, которым затруднительно.

Как работает импульсный блок питания

Многих радиолюбителей интересует, как работает и на каких механизмах базируется импульсный блок питания. Подробно рассмотрим на примере блока от двд плейера BBK DV811X. Данный блок был выбран потому, что все компоненты схемы здесь стоят свободно, понятно и не залиты клеем. Это очень поможет новичкам разобраться с принципом их работы. Для сравнения типичный блок питания от ноутбука. Сложно сразу понять, что здесь и где. Для четкого разъяснения всех моментов построим принципиальную схему. Максимально просто расскажем о каждом элементе, зачем он тут стоит и какую функцию выполняет.

Купить импульсные источники питания в этом китайском магазине.

Рассмотрим общие принципы работы блоков питания. Для начала линейный.

В нем сетевое напряжение подается на трансформатор, понижающий его после чего стоит выпрямитель, фильтр и стабилизатор. Трансформаторы в таких блоках обладают большими габаритами и чаще всего находят свое применение в лабораторных источниках питания и аудио усилителях.

Теперь импульсные блоки питания. 220 вольт выпрямляется, после чего постоянное напряжение преобразуется в импульсы с большей частотой, которые подаются на высокочастотный трансформатор. С выходных обмоток снимается напряжение и выпрямляется

Далее подается через цепь обратной связи в формирователь импульсов для поддержания стабильного напряжение на выходе путем регулирования длительности или скважности импульсов. Выпрямленное фильтруется для получения стабильного значения

Объяснение схемы Клеммы – питание от сети 220 вольт и сетевое кнопка, и видим предохранитель. При превышении тока, проходящего через предохранитель, его номинального порога, он сгорает, размыкая блок питания с сетью. Дальше мы видим сетевой фильтр.

Летние скидки до 50% — Электроника для самоделок вкитайском магазине.

Он состоит из двух конденсаторов и дросселя подавления электромагнитных помех. Посмотрим на типовую схему этого фильтра. Таким фильтром оснащено большинство современных устройств. Он состоит из 2 X-конденсаторов и дросселя подавления электромагнитных помех. Это конденсаторы, которые были специально разработаны для применения сетевых фильтров. Они выдерживают всплески напряжения до нескольких киловольт и сделаны из негорючих материалов. Для противофазных помех, которые возникают между фазой и нейтралью, является кратчайшим путем следования, а значит они не дают помехам сети попасть в блок питания и, соответственно, шумам блока питания в сеть. Что касается дросселей подавления электромагнитных помех, существует множество видов, но в целом, это катушки, намотанные на ферритовый сердечник. Помехи наводят ток разных знаков, компенсируя друг друга. Стоит добавить еще про синфазные помехи – между фазой и корпусом или между нейтралью и корпусом. Для компенсации таких помех часто применяют так называемые Y-конденсаторы. В случае перегорания они точно будут разомкнуты. Они также выдерживают всплески напряжения. Пару таких конденсаторов подключают между проводами сети и корпусом. А корпус в свою очередь подключается к заземлению.

Если в вашей розетке не будет заземления, то корпус устройства будет кусаться около 110 Вольт с очень маленьким током. В данном блоке питания предусмотрены посадочные места под эти конденсаторы.

Но производитель вывел сетевой провод без заземления. Поэтому нет никакого смысла в данных конденсаторах в данном случае. После сетевого фильтра стоит диодный мост, выполненный на 4 диодах 1n 4007. Выпрямленное напряжение подается на конденсатор. Он сглаживает его форму. Конденсатор в данном случае на 22 микрофарада, 400 вольт. Напряжение на конденсаторе должно быть около 290-300 вольт. Теперь нам надо преобразовать его в высокочастотную последовательность импульсов. Для начала посмотрим, что это за микросхема. Маркировка dh321. Рассмотрим, как В целом устроены подобные преобразователи.

Онлайн калькулятор: https://cxem.net/calc/divider_calc.php

Вопросы по импульсным источникам питания: https://forum.cxem.net/index.php?showtopic=1480

Далее смотрите с 5 минуты на видео канала Паяльник TV

Как работают импульсные блоки питания

Блоки питания — это электротехнические устройства, которые изменяют характеристики промышленной электроэнергии до уровня параметров, необходимых для работы конечных механизмов.

Они подразделяются на трансформаторные и импульсные изделия.

Сетевой фильтр пропускает через себя промышленную синусоиду. Одновременно он отделяет из нее все посторонние помехи.

Очищенная от помех синусоида поступает на выпрямитель со сглаживающим фильтром. Он превращает полученную гармонику в сигнал напряжения строго постоянной формы действующей величины.

Следующим этапом начинается работа инвертора. Он из постоянного стабилизированного сигнала формирует высокочастотные колебания уже не синусоидальной, а практически строго прямоугольной формы.

Преобразованная в подобный вид электрическая энергия поступает на силовой высокочастотный трансформатор, который, как и обычный аналоговый, видоизменяет ее на пониженное напряжение с увеличенным током.

После силового трансформатора наступает очередь работы выходного выпрямителя.

Заключительным звеном работает сглаживающий выходной фильтр. После него на блок управления бытового прибора поступает стабилизированное напряжение постоянной величины.

Качество работы импульсного блока поддерживается за счет создания в рабочем состоянии обратной связи, реализованной в блоке управления инвертора. Она компенсирует все посадки и броски напряжения, вызываемые колебаниями входной величины или коммутациями нагрузок.

Сетевой выпрямитель имеет в своем составе предохранитель на основе плавкой вставки, диодный мост, электромеханический фильтр, набор дросселей, конденсаторы развязки со статикой.

Накопительная емкость сглаживает пульсации.

Генератор инвертора на основе силового ключевого транзистора в комплекте с импульсным трансформатором выдает напряжение на выходной выпрямитель с диодами, конденсаторами и дросселями.

Оптопара в узле обратной связи обеспечивает оптическую развязку электрических сигналов.

Как разобрать импульсный трансформатор своими руками

Разборка состоит из трех этапов:

  • демонтировать аппарат с платы или из устройства;
  • разобрать магнитопровод;
  • снять катушки.

Демонтаж аппарата

Импульсник крепится двумя способами – при помощи болтов или на электронной плате. Демонтировать аппарат, который крепится болтами, несложно — это делается отверткой и плоскогубцами, а провода перекусываются бокорезами.

Если сердечник установлен прямо на плате, то эта операция выполняется при помощи паяльника. Вывода катушек припаиваются с обратной стороны к дорожкам и для демонтажа их необходимо отпаять:

  • отсоединить провода от платы и вынуть ее из корпуса;
  • взять трансформатор в левую руку так, чтобы большой палец упирался в плату и отодвигал ее от катушек;
  • прогревать паяльником вывода со стороны большого пальца, пока они не сдвинутся с места;
  • развернуть плату и повторить п.п. 2-3 с другой стороны магнитопровода;
  • повторять п.п. 2-4, пока трансформатор не отделится от платы полностью.

Срезаем швы магнитопровода

Магнитопровод импульсного трансформатора изготовлен не из трансформаторного железа, а из феррита. Части такого устройства склеены эпоксидной смолой или другим клеем. Для разборки магнитопровод необходимо нагреть. Для этого склейка прогревается строительным феном или аппарат укладывается местом соединения на нагретый утюг.

После прогревания половинки магнитопровода разделяются тонким ножом:

  • положить сердечник на бок на твердое основание нагретой стороной вверх;
  • установить нож в место соединения;
  • надавить на нож руками или без усилия ударить плоскогубцами или ручкой отвертки.

В некоторых случаях разобрать магнитопровод получается без нагрева, но феррит хрупкий материал и есть опасность его разрушения.

Совет! Расколотый сердечник допускается склеить суперклеем (циакрином).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector